P4-26) In Next Fig. a 9.00 V battery is connected to a resistive strip that consists of three sections with the same cross-sectional areas but different conductivities. gives the electric potential $V(x)$ versus position x along the strip. The horizontal scale is set by $x_{s} 8.00 \mathrm{~mm}$. Section 3 has conductivity $3.00 \times 10^{\wedge} 7$. What is the conductivity of

(a)
 section (a) 1 and (b) 2?
4. The absolute values of the slopes (for the straight-line segments shown in the graph are equal to the respective electric field magnitudes. Thus, applying Eq. 26-5 and Eq. 26-13 to the three sections of the resistive strip, we have

$$
\begin{aligned}
& J_{1}=\frac{i}{A}=\sigma_{1} E_{1}=\sigma_{1}\left(0.50 \times 10^{3} \mathrm{~V} / \mathrm{m}\right) \\
& J_{2}=\frac{i}{A}=\sigma_{2} E_{2}=\sigma_{2}\left(4.0 \times 10^{3} \mathrm{~V} / \mathrm{m}\right) \\
& J_{3}=\frac{i}{A}=\sigma_{3} E_{3}=\sigma_{3}\left(1.0 \times 10^{3} \mathrm{~V} / \mathrm{m}\right)
\end{aligned}
$$

We note that the current densities are the same since the values of i and A are the same (see the problem statement) in the three sections, so $J_{1}=J_{2}=J_{3}$.
(a) Thus we see that $\sigma_{1}=2 \sigma_{3}=2\left(4.00 \times 10^{7}(\Omega \cdot \mathrm{~m})^{-1}\right)=8.00 \times 10^{7}(\Omega \cdot \mathrm{~m})^{-1}$.
(b) Similarly, $\sigma_{2}=\sigma_{3} / 4=\left(4.00 \times 10^{7}(\Omega \cdot \mathrm{~m})^{-1}\right) / 4=1.00 \times 10^{7}(\Omega \cdot \mathrm{~m})^{-1}$.

P5-26) In Fig., current is set up through a truncated right circular cone of resistivity 731 , left radius $a=2.00 \mathrm{~mm}$, right radius $b=$ 2.30 mm , and length $L=1.94 \mathrm{~cm}$. Assume that the current density is uniform across any cross section taken perpendicular to the length.What is the resistance of the cone?

5. The current i is shown in the figure entering the truncated cone at the left end and leaving at the right. This is our choice of positive x direction. We make the assumption that the current density J at each value of x may be found by taking the ratio i / A where A $=\pi r^{2}$ is the cone's cross-section area at that particular value of x.

The direction of \bar{J} is identical to that shown in the figure for i (our $+x$ direction). Using Eq. 26-11, we then find an expression for the electric field at each value of x, and next find the potential difference V by integrating the field along the x axis, in accordance with the ideas of Chapter 25 . Finally, the resistance of the cone is given by $R=V / i$. Thus,

$$
J=\frac{i}{\pi r^{2}}=\frac{E}{\rho}
$$

where we must deduce how r depends on x in order to proceed. We note that the radius increases linearly with x, so (with c_{1} and c_{2} to be determined later) we may write $r=c_{1}+c_{2} x$.

Choosing the origin at the left end of the truncated cone, the coefficient c_{1} is chosen so that $r=a$ (when $x=0$); therefore, $c_{1}=a$. Also, the coefficient c_{2} must be chosen so that (at the right end of the truncated cone) we have $r=b$ (when $x=L$); therefore, $c_{2}=(b-a) / L$. Our expression, then, becomes

$$
r=a+\left(\frac{b-a}{L}\right) x
$$

Substituting this into our previous statement and solving for the field, we find

$$
E=\frac{i \rho}{\pi}\left(a+\frac{b-a}{L} x\right)^{-2} .
$$

Consequently, the potential difference between the faces of the cone is

$$
\begin{aligned}
V & =-\int_{0}^{L} E d x=-\frac{i \rho}{\pi} \int_{0}^{L}\left(a+\frac{b-a}{L} x\right)^{-2} d x=\left.\frac{i \rho}{\pi} \frac{L}{b-a}\left(a+\frac{b-a}{L} x\right)^{-1}\right|_{0} ^{L} \\
& =\frac{i \rho}{\pi} \frac{L}{b-a}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{i \rho}{\pi} \frac{L}{b-a} \frac{b-a}{a b}=\frac{i \rho L}{\pi a b} .
\end{aligned}
$$

The resistance is therefore

$$
R=\frac{V}{i}=\frac{\rho L}{\pi a b}=\frac{(731 \Omega \cdot \mathrm{~m})\left(3.50 \times 10^{-2} \mathrm{~m}\right)}{\pi\left(1.70 \times 10^{-3} \mathrm{~m}\right)\left(2.30 \times 10^{-3} \mathrm{~m}\right)}=2.08 \times 10^{6} \Omega
$$

P25-26) Wire C and wire D are made from different materials and have length $L C=L D$ $=1.0 \mathrm{~m}$. The resistivity and diameter of wire C are $2.0 \times 10^{\wedge} 6$ and 1.00 mm , and those of wire D are $1.0 \times 10^{\wedge} 6$ and 0.50 mm . The wires are joined as shown in Fig, and a current of 2.0 A is set up in them. What is the electric potential difference between (a) points 1 and 2 and (b) points 2 and 3 ? What is the rate at which energy is dissipated between (c) points 1 and 2 and (d) points 2 and 3 ?

ANALYZE (a) Using Eq. 26-16, we find the resistance of wire C to be

$$
R_{C}=\rho_{C} \frac{L_{C}}{\pi r_{C}^{2}}=\left(2.0 \times 10^{-6} \Omega \cdot \mathrm{~m}\right) \frac{1.0 \mathrm{~m}}{\pi(0.00100 \mathrm{~m})^{2}}=0.637 \Omega
$$

Thus, $\Delta V_{12}=i R_{C}=(2.0 \mathrm{~A})(0.637 \Omega)=1.3 \mathrm{~V}$.
(b) Similarly, the resistance for wire D is

$$
R_{D}=\rho_{D} \frac{L_{D}}{\pi r_{D}^{2}}=\left(1.0 \times 10^{-6} \Omega \cdot \mathrm{~m}\right) \frac{1.0 \mathrm{~m}}{\pi(0.00050 \mathrm{~m})^{2}}=1.27 \Omega
$$

and the potential difference is $\Delta V_{23}=i R_{D}=(2.0 \mathrm{~A})(1.27 \Omega)=2.546 \mathrm{~V} \approx 2.5 \mathrm{~V}$.
(c) The power dissipated between points 1 and 2 is

$$
P_{12}=i^{2} R_{C}=(2.0 \mathrm{~A})^{2}(0.637 \Omega)=2.5 \mathrm{~W} .
$$

(d) Similarly, the power dissipated between points 2 and 3 is

$$
P_{23}=i^{2} R_{D}=(2.0 \mathrm{~A})^{2}(1.27 \Omega)=5.1 \mathrm{~W} .
$$

LEARN The results may be summarized in terms of the following ratios:

$$
\frac{P_{23}}{P_{12}}=\frac{\Delta V_{23}}{\Delta V_{12}}=\frac{R_{D}}{R_{C}}=\frac{\rho_{D}}{\rho_{C}} \cdot \frac{L_{D}}{L_{C}} \cdot\left(\frac{r_{C}}{r_{D}}\right)^{2}=\frac{1}{2} \cdot 1 \cdot(2)^{2}=2 .
$$

P32-26) The current-density magnitude in a certain circular wire is $J=\left(2.75 \mathrm{x} 10^{\wedge} 10\right.$ $\left.\mathrm{A} / \mathrm{m}^{4}\right) r^{2}$, where r is the radial distance out to the wire's radius of 3.00 mm . The potential applied to the wire (end to end) is 80.0 V . How much energy is converted to thermal energy in 1.00 h ?
32. Assuming the current is along the wire (not radial) we find the current from Eq. 26-4:

$$
i=\int|\vec{J}| d A=\int_{0}^{R} k r^{2} 2 \pi r d r=\frac{1}{2} k \pi R^{4}=3.50 \mathrm{~A}
$$

where $k=2.75 \times 10^{10} \mathrm{~A} / \mathrm{m}^{4}$ and $R=0.00300 \mathrm{~m}$ The rate of thermal energy generation is found from Eq. 26-26: $P=i V=280 \mathrm{~W}$. Assuming a steady rate, the thermal energy generated in 40 s is $Q=P \Delta t=(280 \mathrm{~J} / \mathrm{s})(3600 \mathrm{~s})=1.01 \times 10^{6} \mathrm{~J}$.

P40-26) Figure shows a rod of resistive material. The resistance per unit length of the rod increases in the positive direction of the x axis. At any position x along the rod, the resistance $d R$ of a narrow (differential) section of width $d x$ is given by $d R=5.00 x d x$, where $d R$ is in ohms and x is in meters. Figure shows such a narrow section. You are to slice off a length of the rod between $x=0$ and some position $x=L$ and then connect that length to a battery with potential difference $V=8.0 \mathrm{~V}$ You want the current in the length to transfer energy to
 thermal energy at the rate of 180W.At what position $x=L$ should you cut the rod?
40. From $P=V^{2} / R$, we have

$$
R=(8.0 \mathrm{~V})^{2} /(180 \mathrm{~W})=0.356 \Omega .
$$

To meet the conditions of the problem statement, we must therefore set

$$
\int_{0}^{L} 5.00 x d x=0.356 \Omega
$$

Thus,

$$
\frac{5}{2} L^{2}=0.356 \Rightarrow L=0.377 \mathrm{~m}
$$

P48-26) Figure gives the magnitude $E(x)$ of the electric fields that have been set up by a battery along a resistive rod of length 9.00 mm . The vertical scale is set by $E s=8.00 \times 10^{\wedge} 3$ V / m. The rod consists of three sections of the same material but with different radii. (The schematic diagram of Fig. does not indicate the different radii.) The radius of section 3 is 1.70 mm . What is the radius of (a) section 1 and (b) section 2 ?

48. (a) Since the material is the same, the resistivity ρ is the same, which implies (by Eq. $26-11$) that the electric fields (in the various rods) are directly proportional to their current-densities. Thus, $J_{1}: J_{2}: J_{3}$ are in the ratio $2.5 / 4 / 1.5$ (see Fig. 26-27). Now the currents in the rods must be the same (they are "in series") so

$$
J_{1} A_{1}=J_{3} A_{3}, J_{2} A_{2}=J_{3} A_{3}
$$

Since $A=\pi r^{2}$, this leads (in view of the aforementioned ratios) to

$$
4 r_{2}^{2}=1.5 r_{3}^{2}, 2.5 r_{1}^{2}=1.5 r_{3}^{2}
$$

Thus, with $r_{3}=1.70 \mathrm{~mm}$, the latter relation leads to $r_{1}=(1.5 / 2.5)^{1 / 2}(1.70 \mathrm{~mm})=1.32 \mathrm{~mm}$
(b) The $4 r_{2}^{2}=1.5 r_{3}^{2}$ relation leads to $r_{2}=(1.5 / 4.0)^{1 / 2}(1.70 \mathrm{~mm})=104 \mathrm{~mm}$.

